

LA-UR-21-27731

Approved for public release; distribution is unlimited.

Title: Fabrication of Monolithic U-10Mo Fuel Foils for the Technical

University of Munic

Author(s): Miller, Cody

Intended for: Customer Visit

Issued: 2021-08-03

Fabrication of Monolithic U-10Mo Fuel Foils for the Technical University of Munich

SIGMA Division

SIGMA-1 – Deformation Processing

Cody A. Miller

August 9-11, 2021

The Mission

- MISSION: To develop high-density, monolithic U-Mo fuel for research reactor conversions
 - Current reactors use HEU dispersion fuels
- Aimed at converting current research reactors to the use of nonweapons-grade low-enriched uranium (LEU) fuels.
 - Reduce the amount and availability of weapons grade uranium
- Both domestic and abroad, programs are converting to a monolithic LEU-10Mo fuel source

U-Mo Monolithic Base Fuel Design

Domestic Monolithic Fuel Fabrication

As Received Ingots, Courtesy of Y-12

• We have: Dimensions, Weight, and Chemistry.

Ingot ID	Sample ID	Mass (g)	richment (%U	U (g)	U-235 (g)
3K32-M4-X21F	Y143630030	1517.6	0.215	89.7	1361.29	2.93
3K32-M5-X21F	Y143630030	1617.6	0.215	89.7	1450.99	3.12

Analyte Id	Analyte Name	Result
7440440	Carbon	526
	Aliquot	524
	Aliquot	524
	Aliquot	529

- We Need: Radiography, Microstructure, Homogenization
 - Is the Molybdenum homogenous?

As-Received Ingots

Grain size

3K32-N7-XLJP-1

3K32-N9-XLJP-1

Hot Rolling – The Preparation

Hot Rolled in a Steel Can

- Prevents oxidation, rad con, and improves surface quality
- Steel cans are cleaned, coated, and welded around the ingot
- Electron beam welded in vacuum

Hot Rolling – The Conditions

- Rolled at 700 °C (just below the eutectic at 725 °C)
 - Strain Rate of ~ 0.1 s⁻¹
 - 10% to 12% reduction per pass = dynamic recrystallization

550 °C, 5.0 s⁻¹

7/29/21 | 7 7/29/21 | 7

Lessons Learned – The U-Fe Eutectic

- Furnace control and patience is key
- Too high a temperature to reduce wait time backfires

Lessons Learned - Patience

- Too little reduction, or too cold an ingot, results in curled foils
 - Flatten in the Nordberg = broken foil
- Waviness in the can material isn't an issue, doesn't translate to ingot
 - Can lid is thinning

Lessons Learned – Stress Corrosion Cracking

- SCC occurring if foils sit following hot rolling
 - Anneal immediately following rolling or,
 - Preserve under vacuum until annealed

Decanning

- Can isn't perfectly straight
- We have a power shear and a dewalt handheld shear
- Don't cut the uranium!

Hot Rolled + Annealed Microstructure

- Potential Molybdenum banding?
 - Historical concern of the CONVERT program
- Partial recrystallization?
 - Change anneal to 700°C-4h

Cold Rolling

- 30+ passes in 0.001"-0.002" increments
- Most foils finish very flat and straight
- Some degree of edge cracking

Foil Sizing

- Sounds easy, how do you do it?
 - EDM Too expensive, recast layer
 - Waterjet Too expensive, criticality concerns
 - Shear Cheap, let's do it!
 - Slitter Cheap, lets do it!
- Most difficult part of the program

Inspection

What does our customer want?

Inspection

A flattening anneal following sizing has been added

$$-700 \, ^{\circ}\text{C} - 1 \, \text{h}$$

Packaging

- Moral of the story...
 - Coordination is key!
- How do you go from sizing, to cleaning, to inspection, to packaging, in a day.
 - Sizing: 2 h
 - Cleaning: 2 h
 - Inspection: 3 h
 - Packaging: 4 h
- Every step of this project takes coordination, among people, teams, equipment, availability.

Thanks to Our Teams

Powder Materials Processing

- Erik Luther

Deformation Processing

- Carl Osborn, Ryan Mier, Allie Glover, Sean Raybon

Electrochemistry

Don Johnson, Randy Edwards

Welding

Stephen Weist, Andy Duffield, Brett Ireland, Mark Sandoval, Michael Strohmeyer

Characterization

Kevin Bohn, Robert Forsyth, Eric Tegtmeier, William Winter

SIGMA Operations

- Hannah Cross, JD Montalvo, Chastity Vigil, Jonathan Zambrano

RCT

- Bryan Bonser, Daniel Romero, Greg Sharp, Sophia Winward

Thank You!